1. 首页
  2. 物理
  3. 高中物理

氢原子中的电子绕原子核旋转和人造地球卫星绕地球旋转相比较(不计空气阻力)()A.轨道半径越大,线速度都越小B.轨道半径越大,周期都越大C.电子从内层轨道向外层轨道跃迁时,总

一、题文

氢原子中的电子绕原子核旋转和人造地球卫星绕地球旋转相比较(不计空气阻力)(  )
A.轨道半径越大,线速度都越小
B.轨道半径越大,周期都越大
C.电子从内层轨道向外层轨道跃迁时,总能量(动能和电势能)不变,人造卫星从远地点向近地点运动时,总能量(动能和重力势能)也不变
D.电子可以在大于基态轨道半径的任意圆轨道上运动,卫星可以在大于地球半径的任意轨道上运动

考点提示:人造地球卫星,库仑定律,电势能

二、答案

A、根据库仑力提供向心力得:k
q1q2
r2
=m
v2
r
GMm
r2
=m
v2
r

解得:v=
kq1q2
mr 

GMm
r2
=m
v2
r
,v=
GM
r

所以轨道半径越大,线速度都越小.故A正确
B、k
q1q2
r2
=m
2r
T2

GMm
r2
=m
2r
T2
,所以轨道半径越大,周期都越大,故B正确
C、电子从内层轨道向外层轨道跃迁时,吸收能量,总能量(动能和电势能)增大,人造卫星从远地点向近地点运动时,总能量(动能和重力势能)也不变,故C错误
D、电子的轨道半径是量子化的,分立的,卫星可以在大于地球半径的任意轨道上运动,故D错误
故选AB.

三、考点梳理

知名教师分析,《氢原子中的电子绕原子核旋转和人造地球卫星绕地球旋转相比较(不计空气阻力)()A.轨道半径越大,线速度都越小B.轨道半径越大,周期都越大C.电子从内层轨道向外层轨道跃迁时,总》这道题主要考你对 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:人造地球卫星,库仑定律,电势能

考点名称:人造地球卫星
  • 人造地球卫星:

    在地球上抛出的物体,当它的速度足够大时,物体就永远不会落到地面上,它将围绕地球旋转,成为一颗人造地球卫星,简称人造卫星。
     (1)人造卫星按运行轨道可分为低轨道卫星、中轨道卫星、高轨道卫星,以及地球同步轨道卫星、极地轨道卫星等。
     (2)按用途人造卫星可分为三大类:科学卫星、技术试验卫星和应用卫星。

  • 人造地球卫星:

    1、若已知人造卫星绕地心做匀速率圆周运动的轨道半径为r,地球的质量为M,各物理量与轨道半径的关系:
    ①由得卫星运行的向心加速度为:
    ②由得卫星运行的线速度为:
    ③由得卫星运行的角速度为:
    ④由得卫星运行的周期为:
    ⑤由得卫星运行的动能:
    即随着运行的轨道半径的逐渐增大,向心加速度a、线速度v、角速度ω、动能Ek将逐渐减小,周期T将逐渐增大。
    2、用万有引力定律求卫星的高度:
    通过观测卫星的周期T和行星表面的重力加速度g及行星的半径R可以求出卫星的高度。
    3、近地卫星、赤道上静止不动的物体
    ①把在地球表面附近环绕地球做匀速率圆周运动的卫星称之为近地卫星,它运行的轨道半径可以认为等于地球的半径R0,其轨道平面通过地心。若已知地球表面的重力加速度为g0,则
    得:
    得:
    得:
    若将地球半径R0=6.4×106m和g0=9.8m/s2代入上式,可得v=7.9×103m/s,ω=1.24×10-3rad/s,T=5074s,由于且卫星运行的轨道半径 r>R0,所以所有绕地球做匀速率圆周运动的卫星线速度v<7.9×103m/s,角速度ω<1.24×10-3rad/s,而周期T>5074s。
    ②特别需要指出的是,静止在地球表面上的物体,尽管地球对物体的重量也为mg,尽管物体随地球自转也一起转,绕地轴做匀速率圆周运动,且运行周期等于地球自转周期,与近地卫星、同步卫星有相似之处,但它的轨道平面不一定通过地心,如图所示。只有当纬度θ=0°,即物体在赤道上时,轨道平面才能过地心.地球对物体的引力F的一个分力是使物体做匀速率圆周运动所需的向心力f=mω2r,另一个分力才是物体的重量mg,即引力F不等于物体的重量mg,只有当r=0时,即物体在两极处,由于f=mω2r=0,F才等于mg。

    ③赤道上随地球自转而做圆周运动的物体与近地卫星的区别:
    A、赤道上物体受的万有引力只有一小部分充当向心力,另一部分作为重力使得物体紧压地面,而近地卫星的引力全部充当向心力,卫星已脱离地球;
    B、赤道上(地球上)的物体与地球保持相对静止,而近地卫星相对于地球而言处于高速旋转状态。
    4、卫星的超重和失重
    “超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同。“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用,比如水银气压计、天平、密度计、电子称、摆钟等。
    5、卫星变轨问题
    卫星由低轨道运动到高轨道,要加速,加速后作离心运动,势能增大,动能减少,到高轨道作圆周运动时速度小于低轨道上的速度。

    当以第一宇宙速度发射人造卫星,它将围绕地球表面做匀速圆周运动;若它发射的速度介于第一宇宙速度与第二宇宙速度之间,则它将围绕地球做椭圆运动。有时为了让卫星绕地球做圆周运动,要在卫星发射后做椭圆运动的过程中二次点火,以达到预定的圆轨道。设第一宇宙速度为v,则由第一宇宙速度的推导过程有。在地球表面若卫星发射的速度v1>v,则此时卫星受地球的万有引力应小于卫星以v1绕地表做圆周运动所需的向心力m,故从此时开始卫星将做离心运动,在卫星离地心越来越远的同时,其速率也要不断减小,在其椭圆轨道的远地点处(离地心距离为R′),速率为v2(v2<v1),此时由于G>m,卫星从此时起做向心运动,同时速率增大,从而绕地球沿椭圆轨道做周期性的运动。如果在卫星经过远地点处开动发动机使其速率突然增加到v3,使G=m,则卫星就可以以速率v3,以R′为半径绕地球做匀速圆周运动。同样的道理,在卫星回收时,选择恰当的时机使做圆周运动的卫星速率突然减小,卫星将会沿椭圆轨道做向心运动,让该椭圆与预定回收地点相切或相交,就能成功地回收卫星。

考点名称:库仑定律
  • 库仑定律:


  • “割补”法处理非点电荷间的静电力问题:

    在应用库仑定律解题时,由于其适用条件是点电荷,所以造成了一些非点电荷问题的求解困难,对于环形或球形缺口问题,“割补法”非常有效。所谓“割”是指将带电体微元化,再利用对称性将带电体各部分所受电场力进行矢量合成。所谓“补”是将缺口部分先补上,使带电体能作为点电荷来处理。

    静电力作用的平衡与运动类问题的解法:

    带电体在静电力参与下的运动,从运动轨迹来看可以有直线运动、曲线运动;从运动性质来看可以是匀变速运动,也可以是变加速运动;从参与运动的研究对象来看可以是单一的物体,也可以是多物体组成的系统等。物体或者系统在静电力作用下处于平衡状态或某种形式的运动时,解决思路与力学中同类问题的解决思路相同,仍需选定研究对象后进行受力分析,再利用平衡条件或牛顿运动定律列方程求解。但需注意库仑力的特点,特别是在动态平衡问题、运动问题中,带电体间距离发生变化时,库仑力也要发生变化,要分析力与运动的相互影响。整体法与隔离法是解决连接体问题的有效方法,在通过静电力联系在一起的系统,也要注意考虑整体法与隔离法的选择。

  • 知识拓展:

    三个点电荷在相互间作用力作用下处于平衡时的规律
    规律一:三个点电荷的位置关系是“同性在两边,异性在中间”:如果三个点电荷只在库仑力的作用下能够处于平衡状态,则这三个点电荷一定处于同一直线上,且有两个是同性电荷,一个是异性电荷,两个同性电荷分别在异性电荷的两边。
    规律二:中间的电荷所带电荷量是三个点电荷中电荷量最小的;两边同性电荷谁的电荷量小,中间异性电荷就距谁近一些.
    证明:如图所示,甲、乙、丙三个点电荷处于平衡状态,它们的电荷量分别为甲与乙、乙与丙之间的距离分别为为正电荷,则为负电荷。由公式F=qE知,三个电荷能够处于平衡状态,说明甲、乙、丙三个电荷所在处的合场强为0。

    乙、丙两点电荷在甲处产生的场强分别为
    两场强在甲处大小相等,方向相反,合场强等于零,故,由此式可知同理可证
    规律三:三个点电荷的电荷量满足

    证明:三个点电荷能够同时处于平衡状态,则三个点电荷之间的库仑力相等,即


    整理该式易得

    联立两式得
    三个自由电荷都处于平衡状态时,则口诀概括为 “三点共线,两同夹异(同性在两边,异性在中间),两大夹小,近小远大,高考不怕”。由此可以迅速、准确地确定三个电荷的相对位置及电性。

考点名称:电势能
  • 电势能:




  • 电势能大小的比较方法:

    1.由公式判断
    时,,即;当时,可总结为正电荷在电势高的地方电势能大,而负电荷在电势高的地方电势能小。
    2.做功判断法电场力做正功,电荷(无论是正电荷还是负电荷) 从电势能较大的地方移向电势能较小的地方。反之,如果电荷克服电场力做功,那么电荷将从电势能较小的地方移向电势能较大的地方。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/wuli/1328800.html