1. 首页
  2. 数学
  3. 初中数学
  4. 倒数代数式的求值

若a=-12,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为()A.2B.-1C.-3D.0

一、题文

若a=-
1
2
,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为(  )
A.2B.-1C.-3D.0

考点提示:倒数,代数式的求值

二、答案

∵c,d互为倒数,
∴cd=1,
当a=-
1
2
,b=2时,2(a+b)-3cd=2×(-
1
2
+2)-3×1=2×
3
2
-3=3-3=0.
故选:D.

三、考点梳理

知名教师分析,《若a=-12,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为()A.2B.-1C.-3D.0》这道题主要考你对 倒数代数式的求值 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:倒数,代数式的求值

考点名称:倒数
  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。
  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。
  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。
考点名称:代数式的求值
  • 代数式的值:
    用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。
  • 代数式求值的步骤:
    (1)代入;
    (2)计算。
    常用的代入方法有直接代入法与整体代入法。
    注:代数式的值的取值条件:
    (1)不能使代数式失去意义;
    (2)不能使所表示的实际问题失去意义。
  • 求代数式的值的方法:
    ①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
    ②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
    ③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/742423.html