1. 首页
  2. 数学
  3. 初中数学
  4. 一次函数的定义

下列函数y=πx,y=3-2x,y=x,y=x2-2,其中一次函数共有()A.1个B.2个C.3个D.4个

一、题文

下列函数y=πx,y=3-2x,y=x,y=x2-2,其中一次函数共有(  )
A.1个B.2个C.3个D.4个

考点提示:一次函数的定义

二、答案

根据一次函数的定义可知:
y=πx是一次函数,
y=3-2x是一次函数,
y=x是一次函数,
y=x2-2自变量次数不为1,故不是一次函数,
故一次函数共有3个.

三、考点梳理

知名教师分析,《下列函数y=πx,y=3-2x,y=x,y=x2-2,其中一次函数共有()A.1个B.2个C.3个D.4个》这道题主要考你对 一次函数的定义 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:一次函数的定义

考点名称:一次函数的定义
  • 一次函数的定义:
    在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
    ①正比例函数是一次函数,但一次函数不一定是正比例函数;
    ②一般情况下,一次函数的自变量的取值范围时全体实数;
    ③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。
  • 一次函数基本性质:
    1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
    在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

    2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

    3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

    4.在两个一次函数表达式中:
    当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
    当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
    当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
    当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
    当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

    5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
    该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
    当k1,k2正负相同时,二次函数开口向上;
    当k1,k2正负相反时,二次函数开口向下。
    二次函数与y轴交点为(0,b2b1)。

    6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。
  • 一次函数的判定:
    ①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
    ②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
    ③当k=0,b≠0时,这个函数不是一次函数;
    ④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/497776.html