1. 首页
  2. 数学
  3. 初中数学

某正方体六个面分别标有数字1,2,3,4,6,12.且每个面和它所相对面的数字之积均相等,铁哥随意向上抛该正方体,落地后正面朝上数字作为a,它所对的面的数字作为b.将其中一

一、题文

某正方体六个面分别标有数字1,2,3,4,6,12.且每个面和它所相对面的数字之积均相等,铁哥随意向上抛该正方体,落地后正面朝上数字作为a,它所对的面的数字作为b.将其中一个数字作为等腰三角形的底,另一个数字作为等腰三角形的腰,则能够构成等腰三角形的概率是______.

考点提示:列举法求概率,等腰三角形的性质,等腰三角形的判定,三角形的三边关系

二、答案

由题意得:1与12相对;3与4相对;2与6相对,
当1为底边,12为腰时,能构成等腰三角形;12为底,1为腰,不能构成三角形;
3为底,4为腰时,能构成等腰三角形;3为腰,4为底能构成等腰三角形;
2为底,6为腰时,能构成等腰三角形;2为腰,6为底,不能构成三角形,
则P构成等腰三角形=
4
6
=
2
3

故答案为:
2
3

三、考点梳理

知名教师分析,《某正方体六个面分别标有数字1,2,3,4,6,12.且每个面和它所相对面的数字之积均相等,铁哥随意向上抛该正方体,落地后正面朝上数字作为a,它所对的面的数字作为b.将其中一》这道题主要考你对 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:列举法求概率,等腰三角形的性质,等腰三角形的判定,三角形的三边关系

考点名称:列举法求概率
  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。
  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
考点名称:等腰三角形的性质,等腰三角形的判定
  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
    8.等腰三角形中腰的平方等于高的平方加底的一半的平方
    9.等腰三角形中腰大于高
    10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

  • 等腰三角形的判定:
    1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
    2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
    3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:三角形的三边关系
  • 三角形的三边关系:
    在三角形中,任意两边和大于第三边,任意两边差小于第三边。
    设三角形三边为a,b,c

    a+b>c
    a+c>b
    b+c>a
    a-b<c
    a-c<b
    b-c<a
    在直角三角形中,设a、b为直角边,c为斜边。
    则两直角边的平方和等于斜边平方。
    在等边三角形中,a=b=c
    在等腰三角形中, a,b为两腰,则a=b
    在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

  • 三角形的三边关系定理及推论:
    (1)三角形三边关系定理:三角形的两边之和大于第三边。
    推论:三角形的两边之差小于第三边。
    (2)三角形三边关系定理及推论的作用:
    ①判断三条已知线段能否组成三角形;
    ②当已知两边时,可确定第三边的范围;
    ③证明线段不等关系。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/shuxue/1343063.html