1. 首页
  2. 化学
  3. 九年级化学
  4. 实验室制取和收集气体的思路质量守恒定律

氨气(NH3)是一种无色有刺激性气味的气体,极易溶于水,其水溶液称为氨水,显碱性.其化学方程式为:2NH4Cl+Ca(OH)2CaCl2+2NH3↑+2H2O.氨气在化工生产中应用广泛,如“侯氏制碱法

一、题文

氨气(NH3)是一种无色有刺激性气味的气体,极易溶于水,其水溶液称为氨水,显碱性.其化学方程式为:2NH4Cl+Ca(OH)2CaCl2+2NH3↑+2H2O.氨气在化工生产中应用广泛,如“侯氏制碱法”中就用到氨气.试回答下列问题:
(1)实验室制氨气的发生装置与_________相同(选择“A”或“B”填空).
A.实验室用KMnO4制O2
B.实验室用大理石与稀盐酸制CO2
(2)收集氨气_________用排水法收集(填“能”或“不能”).
(3)“侯氏制碱法”中关键一步的反应原理可表示为: NH3+CO2+H2O+NaCl=NaHCO3+X X是一种氮肥,其化学式为_________.

考点提示:实验室制取和收集气体的思路,质量守恒定律

二、答案

(1)A
(2)不能
(3)NH4Cl

三、考点梳理

知名教师分析,《氨气(NH3)是一种无色有刺激性气味的气体,极易溶于水,其水溶液称为氨水,显碱性.其化学方程式为:2NH4Cl+Ca(OH)2CaCl2+2NH3↑+2H2O.氨气在化工生产中应用广泛,如“侯氏制碱法》这道题主要考你对 实验室制取和收集气体的思路质量守恒定律 等知识点的理解。

关于这些知识点的“解析掌握知识”如下:

知识点名称:实验室制取和收集气体的思路,质量守恒定律

考点名称:实验室制取和收集气体的思路
  • 实验室制取气体的思路:

          1.知识要点详解在初中化学中,主要应掌握O2、H2、CO2的实验室制法。可以从制备所需仪器、药品、反应原理、收集方法、实验装置、验满、验纯及操作要点等方面进行比较。通过比较,能够总结和归纳实验室制取气体的思路。即:研究反应原理一根据所选药品的状态和反应条件,选择适当的仪器组成相应的实验装置一根据实验装置的特点,设计合理的实验操作步骤,预测可能的注意事项一根据所制取气体的性质,选择相应的收集、检验、验满及验纯的方法。
          实验室制取气体及验证其性质的实验,属于基本操作的简单综合实验。通过对比发生装置和收集装置,总结气体的个性及几种气体的共性,提高记忆效果。 

          2.设计装置的依据制取气体的装置分两部分:气体发生装置和气体收集装置。
          发生装置的选取根据反应条件和反应物的状态而设计,收集装置是根据气体的性质(主要是物理性质)而确定的。
          确定收集装置的原则——气体的收集方法是由该气体的性质,如密度、在水中的溶解性、是否与空气或水反应、是否有毒等决定的。

  • 气体发生装置:

    ①“固+固”的反应,简称“固体加热型”,装置如图A所示,如用KMnO4或KClO3和MnO2制O2
    ②“固+液”的反应,简称“固液常温型”,装置如图B、C、D、E。如用H2O2和MnO2制O2、用锌粒与稀H2SO4制H2或用CaCO3与稀盐酸制CO2。同B装置相比,D装置具有便于添加液体药品,制取的气体量较多的优点;C装置不仅添加液体药品方便,而且可通过导管上的开关控制反应的发生和停止;E装置可通过分液漏斗的活塞控制加入药品的量和速度。

    ③“固+液”的反应的发生装置的其他改进:
    为了节约药品,方便操作,可设计如下图所示装置,这些装置都可自动控制。

    当打开弹簧夹时,溶液进入反应器内开始反应;当关闭弹簧夹时,气路不通,反应产生的气体将溶液压出反应器外,液体与同体分离,反应停止。

    气体收集装置:

    收集装置
    选择条件难溶或微溶于水,与水不发生化学反应的气体。如:H2、 O2、CH4不与空气发生反应,密度比空气密度大的气体。如:O2、 CO2不与空气发生反应,密度比空气密度小的气体。如:H2、CH4
    说明①使用排水法收集的气体较纯净,但缺点是会使收集的气体中禽有水蒸气。当导管口有连续均匀的气泡冒出时才开始收集,当有大量气泡从集气瓶口冒出时,表明气体已收集满。
    ②用向上排空气法收集气体,应注意将导管伸到接近集气瓶瓶底,同时应在瓶口盖上玻璃片,以便尽可能地排尽空气,提高所收集气体的纯度。使用排空气法收集的气体比较十燥,但纯度较低,需要验满(可燃性气体则要注意安全,点燃之前一定要验纯,否则有爆炸危险)

    药品的选取和实验方案的设计:

    (1)可行性:所选取的药品能制得要制取的气体;
    (2)药品廉价易得;
    (3)适宜的条件:要求反应条件易达到,便于控制;
    (4)反应速率适中:反应速率不能太快或太慢,以便于收集或进行实验;
    (5)气体尽量纯净;
    (6)注意安全性:操作简便易行,注意防止污染。
    例如:①实验室制取H2时选用锌粒,而不用镁条、铁片,原因是镁价格贵且反应速率太快而铁反应速率又太慢;酸选用稀硫酸,而不宜用稀盐酸、浓硫酸,因为用稀盐酸制得的H2,因混有HCl而不纯,而锌与浓硫酸反应不生成H2.
    ②制CO2时可选用用石灰石(或大理石)与稀盐酸,而不选用Na2CO3浓盐酸、稀硫酸,原因是Na2CO3,反应速率太快,浓盐酸易挥发出HCl气体,稀硫酸反应不能进行到底,也不能煅烧石灰石,因为条件不易达到,不呵操作;
    ④用KClO3、过氧化氢制O2时,要加少量的MnO2,作催化剂,以加快反应的速率

    实验室制取气体的实验操作程序:

    实验室制取气体存选择好药品、仪器后操作的一般程序:
    (1)组装仪器:一般按从左到右,从下到上的顺序进行;
    (2)检查装置气密;
    (3)装药品:若是固体跟液体反应,一般是是先装入固体再加入液体;
    (4)准备收集装置:若用排水法收集气体时,应在制取气体之前将集气瓶盛满水;
    (5)制取气体;
    (6)收集气体并验满;
    (7)拆洗仪器。
    注意:①给同体加热时.试管口要略向下倾斜;
    ②用加热KMnO4或KClO3(MnO2作催化剂)的方法制取O2,若用排水法收集,实验完毕时应先把导管移出水槽再移走酒精灯;
    ③固体跟液体反应制取气体时,要注意长颈漏斗末端要插入液面以下进行液封,以防漏气。

    装置的选取与连接:

    实验室制取气体的实验往往与气体的净化、气体的干燥综合在一起。气体综合实验的装置选择及连接顺序为:

  • 气体净化的几种方法:

    (1)吸收法:用吸收剂将杂质气体吸收除去。如除去CO中混有的少量CO2,可先用浓NaOH溶液吸收CO2,再用浓硫酸等干燥剂除去水蒸气。常用吸收剂如下表:
    吸收剂吸收的气体杂质吸收剂吸收的气体杂质
    可溶性的气体:HCl,NH3NaOHCO2,HCl,H2O
    无水CuSO4H2O碱石灰CO2,HCl ,H2O
    灼热的铜网O2NaOHCO2,HCl
    灼热的CuOH2,CO浓硫酸H2O
    (2)转化法:通过化学反血,将杂质气体转化为所要得到的气体:如除去CO2中的CO,可将混合气体通过足量的灼热CuO+COCu+CO2

    气体的干燥:

    气体的干燥是通过干燥剂来实现的,选择干燥剂要根据气体的性质。一般原则是:酸性干燥剂不能用来干燥碱性气体,碱性干燥剂不能用来干燥酸性气体,干燥装置由干燥剂的状念决定.
    (1)常见的干燥剂
    干燥剂可干燥的气体不可干燥的气体
    名称或化学式酸碱性状态
    浓H2SO4酸性液体H2、N2、O2、CO2、HCl、CH4、CONH3
    固体NaOH、生石灰,碱石灰(氢氧化钠和生石灰的混合物)碱性固态H2、O2、N2、CH4、CO、NH3CO2、SO2、HCl
    无水CaCl2中性固态除NH3外的所有气体NH3

    (2)干燥装置的选择
     ①除杂试剂为液体时,常选用洗气瓶,气体一般是 “长进短出”,如下图A。
    ②除杂试剂为同体时,常选用干燥管(球形或u 形),气体一般是“大进小出”,如下图B、C。
    ③需要通过加热与固体试剂发生化学反应除去的气体,常采用硬质玻璃管和酒精灯,如下图D。


    装置连接顺序的确定规律:

    (1)除杂和干燥的先后顺序
    ①若用洗气装置除杂,一般除杂在前,干燥在后。原因:从溶液中出来的气体通常混有水蒸气,干燥在后可将水蒸气完全除去。如除去CO中混有的CO2和水蒸气,应将气体先通过。NaOH溶液,再通过浓H2SO4
    ②若用加热装置除杂,一般是干燥在前,除杂在后。如除去CO2中混有的CO和水蒸气,应将气体先通过浓H2SO4,再通过灼热的CuO。
    (2)除去多种杂质气体的顺序一般是先除去酸性较强的气体。如N2中混有 HCl、H2O(气)、O2时,应先除去HCl,再除去水,最后除去O2(用灼热的铜网)。
    (3)检验多种气体的先后顺序(一般先验水蒸气):有多种气体需要检验时,应尽量避免前步检验对后步检验的干扰。如被检验的气体中含有CO2和水蒸气时,应先通过无水CuSO4。检验水蒸气,再通过澄清的石灰水检验CO2.

    确定气体收集方法的技巧:

    (1)排水集气法适用于“不溶于水且小与水反应的气体”,如下图A。
    (2)向上排空气法适用于“密度比空气大且小与空气成分反应的气体”(相对分子质量大于29的气体),如下图B。
    (3)向下排空气法适用于“密度比空气小且小与空气成分反应的气体”(相对分子质量小于29的气体),如下图C。

     (4)不能用排空气法收集的气体
    ①气体的密度与空气的密度相近时不能用排空气法收集
    ②当气体与空气中某一成分反应时不能用排空气法收集
    (5)有毒气体收集方法的确定
    ①有毒,但气体难溶于水时,一般采用排水法收集。如下图D
    ②有毒,但气体叉易溶于水时,则采用带双孔胶塞(一长一短的导气管)的集气瓶利用排空气法收集该气体,但必须接尾气处理装置,以免多余的有毒气体逸散到空气中污染空气,如收集氨气可用图E。


    气体制取实验中关于仪器或装置选择题目的解题技巧:

    (1)需要研究气体实验室制法的化学反应原理;
    (2)需要研究制取这种气体所应采用的实验装置;
    (3)需要研究如何证明制得的气体就是要制取的气体。
    根据给出的仪器或装置进行选取时,应明确制取气体的发生装置主要是两套(同体加热型和固液常温型),依据反应物的状态和反应条件来确定选用哪套发生装置;气体的收集装置主要就是三套(向上排空气法、向下排空气法和排水法),依据气体的性质来确定选用什么样的收集装置。选择仪器时要注意先对实验原理进行判断,然后再根据原理确定装置所需要的仪器。
  • 实验室制取气体的思路图:
  •  

考点名称:质量守恒定律
  • 质量守恒定律的概念及对概念的理解:
    (1)概念:参加化学反应的各物质的质量总和,等于反应后生成的各物质的质量总和。这个规律就叫做质量守恒定律。

    (2)对概念的理解:
    ①质量守恒定律只适用于化学反应,不能用于物理变化例如,将2g水加热变成2g水蒸气,这一变化前后质量虽然相等,但这是物理变化,不能说它遵守质量守恒定律。
    ②质量守恒定律指的是“质量守恒”,不包括其他方面的守恒,如对反应物和生成物均是气体的反应来说,反应前后的总质量守恒,但是其体积却不一定守恒。
    ③质量守恒定律中的第一个“质量”二字,是指“参加”化学反应的反应物的质量,不是所有反应物质量的任意简单相加。
    例如,2g氢气与8g氧气在点燃的条件下,并非生成10g水,而是1g氢气与8g氧气参加反应,生成9g水
    ④很多化学反应中有气体或沉淀生成,因此“生成的各物质质量总和”包括了固态、液态和气态三种状态的物质,不能把生成的特别是逸散到空气中的气态物质计算在“总质量”之外而误认为化学反应不遵循质量守恒定律
  • 质量守恒定律的微观实质:
    (1)化学反应的实质在化学反应过程中,参加反应的各物质(反应物) 的原子,重新组合而生成其他物质(生成物)的过程。由分子构成的物质在化学反应中的变化过程可表示为:


    (2)质量守恒的原因在化学反应中,反应前后原子的种类没有改变,数目没有增减,原子本身的质量也没有改变,所以,反应前后的质量总和必然相等。例如,水通电分解生成氢气和氧气,从微观角度看:当水分子分解时,生成氢原子和氧原子,每两个氢原子结合成一个氢分子,每两个氧原子结合成一个氧分子。

     
  • 质量守恒定律的延伸和拓展理解:

    质量守恒定律要抓住“六个不变”,“两个一定变”“两个可能变”。
    六个不变宏观反应前后的总质量不变
    元素的种类不变
    元素的质量不变
    微观原子的种类不变
    原子的数目不变
    原子的质量不变
    两个一定变物质的种类一定变
    构成物质的分子种类一定变
    两个可能变分子的总数可能变
    元素的化合价可能变

    如从水电解的微观示意图能得出的信息:
    ①在化学反应中,分子可以分成原子,原子又重新组合成新的分子;
    ②一个水分子是由两个氢原子和一个氧原子构成的,或一个氧分子由两个氧原子构成、一个氧分子由两个氢原子构成。或氢气、氧气是单质,水是化合物
    ③原子是化学变化中的最小粒子。
    ④水是由氢、氧两种元素组成的。
    ⑤在化学反应,氧元素的种类不变。
    ⑥在化学反应中,原子的种类、数目不变。
    ⑦参加反应的各物质的质量总和等于反应后生成的各物质的质量总和。
  • 质量守恒定律的发现:
    1. 早在300多年前,化学家们就对化学反应进行定量研究。1673年,英国化学家波义耳(RobertBoyle, 1627-1691)在一个敞口的容器中加热金属,结果发现反应后容器中物质的质量增加了。

    2. 1756年,俄国化学家罗蒙诺索夫把锡放在密闭的容器里锻烧,锡发生变化,生成白色的氧化锡,但容器和容器里物质的总质量,在锻烧前后并没有发生变化。经过反复实验,都得到同样的结果,于是他认为在化学变化中物质的质量是守恒的。

    3. 1774年,法国化学家拉瓦锡用精确的定量实验法,在密封容器中研究氧化汞的分解与合成中各物质质量之间的关系,得到的结论是:参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和。

    4. 后来.人们用先进的测址仪器做了大量精度极高的实验,确认拉瓦易的结论是正确的。从此,质量守恒定律被人们所认识。

    质量守恒定律的应用:
    (1)解释问题
    ①解释化学反应的本质—生成新物质,不能产生新元素(揭示伪科学的谎言问题)。
    ②解释化学反应前后物质的质量变化及用质量差确定某反应物或生成物。

    (2)确定反应物或生成物的质量
    确定反应物或生成物的质量时首先要遵循参加反应的各种物质的质量总量等于生成的各种物质的质量总和;其次各种物质的质量比等于相对分子质量与化学计量数的乘积之比。

    (3)确定物质的元素组成
    理解在化学反应前后,元素的种类不发生改变。可通过计算确定具体的元素质量。

    (4)确定反应物或生成物的化学式
    比较反应前后各种原子个数的多少,找出原子个数的差异。但不能忘记化学式前的化学计量数。

    (5)确定某物质的相对分子质量(或相对原子质量)
    运用质量守恒定律确定某物质的相对分子质量 (或相对原子质量)时,首先寻找两种已知质量的物质,再根据化学方程式中各物质间的质量成正比即可计算得出。注意观察物质化学式前面的化学计量数。

    (6)确定化学反应的类型
    判定反应的类型,首先根据质量守恒定律判断反应物、生成物的种类和质量(从数值上看,反应物质量减少,生成物质最增加)。如果是微观示意图,要对比观察减少的粒子和增加的粒子的种类和数目再进行判断。

    (7)判断化学方程式是否正确
    根据质量守恒定律判断化学方程式的对与否关键是看等号两边的原子总数是否相等,同时注意化学式书写是否有误。

本文来自投稿,不代表本站立场,如若转载,请注明出处:https://www.planabc.net/huaxue/236963.html